
Generating mock catalogs and images
with EGG: the Empirical Galaxy Generator

Contents
1 Installing EGG 2

1.1 Forewords . 2
1.2 Install dependencies . 2
1.3 Install vif and EGG: the short way . 3
1.4 Install vif and EGG: the long way . 3
1.5 Making sure everything works . 5

2 Using EGG 6
2.1 Generic information (applies to all programs) . 7

2.1.1 Command line arguments . 7
2.1.2 Control what is written to the standard output (terminal) 7
2.1.3 Rules for ASCII table formatting . 8
2.1.4 Column-oriented FITS tables . 8

2.2 egg-gencat . 9
2.2.1 Basic usage . 9
2.2.2 Reading and using the generated catalog . 11
2.2.3 Choosing a seed . 13
2.2.4 Starting from your own galaxies . 13
2.2.5 Choosing the survey position . 15
2.2.6 Choosing the stellar mass range . 15
2.2.7 Choosing the redshift range . 15
2.2.8 Adding new photometric bands . 16
2.2.9 Computing absolute magnitudes . 16
2.2.10 Disabling simulation steps . 16
2.2.11 Saving the full spectrum of each galaxy . 17

2.3 egg-2skymaker . 18
2.3.1 Basic usage . 18
2.3.2 Defining the image dimensions . 19
2.3.3 Other features . 19
2.3.4 Advices and hints to prepare SkyMaker templates 20
2.3.5 Unit of the SkyMaker images . 20

2.4 egg-gennoise and egg-genmap . 21
2.4.1 Basic usage . 21
2.4.2 Using a custom astrometry and image dimensions 22
2.4.3 Flag regions of the map with poor catalog coverage 22
2.4.4 Generate beam-smoothed images (sub-millimeter) 22
2.4.5 Generate error and coverage maps . 23
2.4.6 Using a custom noise map . 23
2.4.7 Using a custom flux catalog . 23
2.4.8 Adjusting accuracy and speed . 23

1

1 Installing EGG

1.1 Forewords
EGG is written in C++ and has a few dependencies. I have tried to keep the number of these dependen-
cies as low as possible, and in fact for the moment there are four:

• vif, a library for numerical analysis that I have developed during my PhD,

• cfitsio, for handling FITS files,

• WCSlib, for handling sky-to-pixel conversions,

• and CMake, for managing the building process (dependencies, and platform specific stuff).

1.2 Install dependencies
If your operating system comes with a package manager, this should be very easy. Apart from vif that
we will address in the next section, these dependencies are standard libraries and tools that should be
available in all the package managers.

• Mac users:

sudo port install cfitsio wcslib cmake

or

sudo brew install cfitsio wcslib cmake

• Linux/Ubuntu users:

sudo apt-get install libcfitsio3-dev wcslib-dev cmake

• Other Linux distributions: You get the point. Use yum, apt, pacman, or whatever package man-
ager is supported by your distribution.

• Windows users: no package manager (see below).

If you don’t have a package manager, then you have to compile these tools and libraries yourself... I
hope it doesn’t come to that, because you may loose a lot of time figuring this out. But in the eventuality,
here are the links to places where you can download the source code. Follow the build instructions given
on their respective web page.

• cfitsio: http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html

• WCSlib: http://www.atnf.csiro.au/people/mcalabre/WCS/

• CMake: http://www.cmake.org/download/ (they also offer binaries, check this out first)

2

http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html
http://www.atnf.csiro.au/people/mcalabre/WCS/
http://www.cmake.org/download/

1.3 Install vif and EGG: the short way
Once the dependencies are properly installed, you can download, build and install the vif library and
EGG. Thanks to CMake, the installing process is the same on all computers, and is rather straightfor-
ward. The next section describes each steps in detail, in case you are not familiar with CMake, and is
the recommended way to go.

However, if you don’t have the patience to spend a few minutes on this, or if you are completely lost,
you can use the install.sh script provided in the doc/script/ directory. The script does exactly what
is written in the next section, and only requires you to specify three parameters (“Configurable options”,
at the beginning of the script):

• INSTALL_ROOT_DIR: This is the directory in which vif and EGG will be installed. If you
leave it blank, the script will use the default value adequate for your system (e.g., /usr/local).
This directory is a “root” directory, in the sense that C++ headers will be installed in
$INSTALL_ROOT_DIR/include, while executables will be installed in $INSTALL_ROOT_DIR/bin,
etc.

• CFITSIO_ROOT_DIR and WCSLIB_ROOT_DIR: These directories tell the script where to find the cfitsio
and WCSlib libraries. As above, this is a “root” directory: it must contain the header files in the
include subdirectory, and the library files in lib. Leave it blank if you have installed these
libraries through your package manager, or if you installed them manually in the default system
folders.

Once you have modified these parameters (if need be), just make sure the script is executable and
run it (you can run it from anywhere, the current directory does not matter):

chmod +x install.sh
./install.sh
give your 'sudo' password, if asked

In the end, the script will inform you that EGG was successfully installed. If not, please fall back to
the manual installation described in the next section.

1.4 Install vif and EGG: the long way
1. Make yourself a temporary directory and open a terminal there.

2. Download the following archives and extract them in this directory:

• https://github.com/cschreib/vif/archive/master.tar.gz

• https://github.com/cschreib/egg/archive/master.tar.gz

This bash script will do that for you:

wget https://github.com/cschreib/vif/archive/master.tar.gz
tar -xvzf master.tar.gz && rm master.tar.gz
wget https://github.com/cschreib/egg/archive/master.tar.gz
tar -xvzf master.tar.gz && rm master.tar.gz

In the end, this should create two directories:

egg-master
vif-master

3

https://github.com/cschreib/vif/archive/master.tar.gz
https://github.com/cschreib/egg/archive/master.tar.gz

3. Open a terminal and navigate to the vif-master directory. Then, if you are using cfitsio and
WCSlib from your package manager, run the following commands:

mkdir build && cd build
cmake ../

If instead you have installed one of these two libraries by hand, in a non-standard directory, you
have to provide this directory to the CMake script. This is done this way:

mkdir build && cd build
cmake ../ -DWCSLIB_ROOT_DIR=... -DCFITSIO_ROOT_DIR=...

The “...” have to be replaced by the actual directory in which each library was in-
stalled. For example, if you have installed cfitsio in the /opt/local/share/cfitsio direc-
tory, then the “..." after -DCFITSIO_ROOT_DIR in the above command has to be replaced by
"/opt/local/share/cfitsio".

Another thing to consider is that, by default, CMake will try to install the library inside the system
default directories (e.g., /usr/local/include). If you have root access to your computer, this is
the recommended way to go as it will make things simpler. If you do not have root access, or if
for some reason you prefer to install the library somewhere else than the default location, you can
specify manually the install directory using -DCMAKE_INSTALL_PREFIX:

mkdir build && cd build
cmake ../ -DCMAKE_INSTALL_PREFIX=...

Here, the “...” have to be replaced by the root directory in which you want to install the library.
For example, if you want to install it in /opt/local/include, just replace “...” by "/opt/local"
(yes, omit include). This can of course be combined with the manual installation directories for
WCSlib and cfitsio.

If all goes well, this will configure the vif library and prepare it for installation. The script will
most likely warn you about missing dependencies, but this is OK since none of these are needed
for EGG. Just make sure that cfitsio and WCSlib are found correctly, then install the library with
the following command:

sudo make install
or just 'make install' if you do not need root access

4. Using the terminal, navigate now inside the egg-master directory. Similarly, run the following
commands:

mkdir build && cd build
cmake ../

As for vif, the default behavior is to install EGG in the system directory (e.g., /usr/local/bin).
If you want to change this, use instead:

mkdir build && cd build
cmake ../ -DCMAKE_INSTALL_PREFIX=...

Again, the “...” have to be replaced by the directory in which you want to install the programs.
For example, if you want to install it in /opt/local/bin, just replace “...” by "/opt/local" (yes,
omit bin).

Note that if you have installed the vif library in a non-standard folder, for example in the
/opt/local directory (as above), you will have to manually specify this location to CMake and
use instead:

4

mkdir build && cd build
cmake ../ -DPHYPP_ROOT_DIR="/opt/local"

The same is true for WCSlib and cfitsio: if you had to specify their location manually when
installing vif, you will have to repeat this here.

CMake will generate an error if, somehow, there was an issue in the installation of the vif library.
Else, it will configure EGG and make it ready to be built. Finally, run the last command:

sudo make install
or just 'make install' if you do not need root access

At the end of the process, CMake will remind you in which directory the EGG executables are installed,
e.g.:

-- Installed: /usr/local/bin/egg-gencat
-- Installed: /usr/local/bin/egg-genmap
-- Installed: /usr/local/bin/egg-gennoise
-- Installed: /usr/local/bin/egg-buildmf
-- Installed: /usr/local/bin/egg-2skymaker

If you chose a non-standard install directory, make sure this directory is in your PATH, and you are done.
See, not that hard!

1.5 Making sure everything works
Navigate into a directory of your choosing and call:

egg-gencat verbose maglim=27 selection_band=hst-f160w area=0.08

This will take a few seconds to run. In the end, you should get something like:

note: initializing filters...
note: initializing SED libraries...
note: initializing redshift bins...
note: min dz: 0.1, max dz: 1.00632
note: 33 redshift slices
note: estimating redshift-dependend mass limit...
note: will generate masses from as low as 5.50406, up to 12
note: reading mass functions...
note: found 19 redshift bins and 181 mass bins
note: generating redshifts...
note: generated 66229 galaxies
note: generating masses...
note: generating sky positions...
[---------------------------------------] 33 100%, 57ms elapsed, 0ns left, 57ms total
note: generating morphology...
note: generating SFR...
note: assigning optical SEDs...
[---------------------------------------] 900 100%, 169ms elapsed, 0ns left, 169ms total
[---------------------------------------] 900 100%, 168ms elapsed, 0ns left, 168ms total
note: generate IR properties...
note: assigning IR SED...
note: computing fluxes ...
[---------------------------------------] 66229 100%, 10s elapsed, 0ns left, 10s total
[---------------------------------------] 66229 100%, 14s elapsed, 0ns left, 14s total
note: saving catalog...

5

Also, a file called egg-2015xxxx.fits (e.g., for me it was egg-20151127.fits) weighting about
27MB will be created in the same directory. This is the output catalog, in FITS format. You can open it
in IDL to check its content with the following IDL command:

; Load the catalog
cat = mrdfits(’egg-2015xxxx.fits’, 1)
; Look at its content
help, cat, /str
; Then do some plots
plot, cat.z, cat.m, psym=3, xtit=’redshift’, ytit=’stellar mass’

Then it remains to test the program that will translate this catalog into a SkyMaker-compatible cata-
log, one per band. Try:

egg-2skymaker cat=egg-2015xxxx.fits verbose band=hst-f160w \
template=goodss-hst-f160w.conf

This will use one of the pre-defined SkyMaker template to configure a Hubble image at the same quality
as in the GOODS–South field. This should be very fast and print a few lines in the terminal:

note: reading catalog...
note: found 66229 galaxies
note: convert parameters for ingestion by SkyMaker...
note: define image size and pixel coordinates...
note: image dimensions: 17951,17967 (1.2015 GB)
note: write catalog...
note: done.

In addition, three files should have been created in the same directory, egg-2015xxxx-hst-f160w.cat
(the SkyMaker input catalog), egg-2015xxxx-hst-f160w-hdr.txt (the WCS header to feed to Sky-
Maker), and egg-2015xxxx-sky.conf (the SkyMaker configuration file).

If you have SkyMaker installed on your computer, you can generate the corresponding image by
simply running:

sky egg-2015xxxx-hst-f160w.cat -c egg-2015xxxx-hst-f160w-sky.conf

This should take a couple of minutes (77 seconds on my computer), and finally produce a Hubble
image in egg-2015xxxx-hst-f160w-sci.fits (about 1.3GB in size). You can open it with DS9 and
admire the Universe you just created. Congratulations!

2 Using EGG
As you may have seen from the previous section, EGG is actually composed of several different tools,
each taking care of a different step of the simulation process:

• egg-gencat: creates a new EGG mock catalog,

• egg-2skymaker: convert an EGG catalog into a SkyMaker input catalog,

• egg-gennoise: create an empty image with noise,

• egg-genmap: paint galaxies from an EGG catalog to an empty map created with egg-gennoise.

In this section, I will describe the features and capabilities of each of these programs. You can refer
to this documentation if you need help understanding this or that command line argument, or if you
want to discover new features that you didn’t know existed. Alternatively, each program can provide
you with some limited help on the spot, if you simply call

6

egg-[xxx] help

in the terminal (where [xxx] is to be replaced by the name of the program you want the help for).

2.1 Generic information (applies to all programs)
2.1.1 Command line arguments

All the tools in the EGG suite are compiled into binary executables. This means you do not need to run
Python, IDL, or any other interpreter to launch them. It also means they are fast!

To specify the parameters of each programs, EGG relies exclusively on command line arguments,
rather than configuration files (as done, e.g., with T-PHOT , SkyMaker or SExtractor). The reason why
is that it allows easy scripting with bash (or your favorite shell), and also allows you to experiment and
tweak the parameters directly inside the terminal rather than having to go back and forth between the
terminal and the configuration file.

The syntax for command line arguments is simple: variable=value or -variable=value (the two
are perfectly equivalent). Spaces are not allowed on either side of the = sign, and if value contains
spaces, you must wrap it within double quotes: variable="some value". If you want to provide an
array of values, the syntax is: variable=[value1,value2,...], with no space. If at least one of the
values does contain a space, you must wrap the whole array within double quotes:
variable="[some value1,value2 foo,...]"

(in this case, spaces can be used freely within the quotes). Lastly, if you want to provide multiple
command line arguments, simply put one (or more) space between each argument: x1=10 x2=5. The
order of the arguments does not matter.

Regarding the type of the argument. From the command line, everything is a string of characters.
So there is no difference between "0.08" and 0.08, or "foo" and foo. The values that you provide
are translated into numbers/booleans/whatever by the program, using the standard C++ parsing. This
means in particular that you can use scientific notation for large/small numbers (-1e56). Also, if the
parameter that you want to modify is a boolean (i.e., either 0 or 1), you can simply write the command
line argument as: variable (without a value), which is equivalent to variable=1.

Some examples:
egg-gencat area=0.08 # good
egg-gencat area = 0.08 # bad! don't put spaces around '='

egg-gencat note="my catalog v1.0" # good
egg-gencat note=my catalog v1.0 # bad! missing the quotes "..."

egg-gencat area=0.08 zmin=2 # good
egg-gencat area=0.08zmin=2 # bad! need a space between each argument

egg-gencat bands=[hst-f160w,spitzer-irac1] # good
egg-gencat bands="[hst-f160w,spitzer-irac1]" # good also
egg-gencat bands=[hst-f160w, spitzer-irac1] # bad! cannot use a space in the array
egg-gencat bands="[hst-f160w, spitzer-irac1]" # good! with the quotes, it is fine

2.1.2 Control what is written to the standard output (terminal)

By default, all the tools in the EGG suite run in “silent” mode: unless an error happens, they will not
print anything in the terminal. This is mostly useful for scripted usage. However, if you want to make
sure you understand what is going on, it is recommended to set the verbose command line flag. It is
available for all the tools, and will let each program print information about what it is doing; a short
description of each step of their execution, or even progress bars for the longest steps. This is designed
to alter the performances in a non-noticeable way, so do not hesitate to use it.

7

2.1.3 Rules for ASCII table formatting

Unfortunately, there are various ways an ASCII table can be defined, and building a parser to support
them all is a challenging (if not impossible) task. For simplicity, the EGG tools only support one such
definition. It reads as follows:

• The file may start with a header. It is purely descriptive and will not be read by the program. This
header can span one or multiple lines, and each of these lines must start with the '#' character.

• Empty lines are allowed and ignored.

• Each column must be separated by spaces (or tabulations) only. Properly aligning the columns is
recommended for human readability, but is not mandatory.

• Values in the table may not contain any space. Using quotes will not help you.

• Missing values (i.e., empty “cells” in the table) are forbidden and cannot be understood by the
program. Use a placeholder value instead (for floating point numbers, nan is a good choice).

• All floating point formats are accepted: fixed point (1.5) and scientific (1.5e15). The special
floating point values +inf, -inf and nan are accepted (case does not matter).

• All the values that contain non-numeric characters that are not covered with the above rules are
considered as strings.

• A column may only contain values of a unique type: it is forbidden to mix numbers and strings.

2.1.4 Column-oriented FITS tables

For historical reasons tied to IDL, EGG and vif (the underlying C++ library) prefer to use column-
oriented FITS tables. Although this is a perfectly valid way of doing things (according to the FITS
standard), this is not the standard way FITS tables are used in general. It has, however, a number
of advantages that I will not describe here (take a look at the vif documentation if you are interested).
Although EGG can deal with both row and column-oriented tables for inputs, it will always write outputs
using the column-oriented format. This section will tell you how you can read and write such kind of
FITS tables.

In C++. Using the vif library, reading and writing these tables is natural:

// First declare the columns you want to read (here: 1D columns of doubles)
vec1d m, z, ra, dec;

// Then read them from the file (order is irrelevant)
fits::read_table("the_file.fits", ftable(m, z, ra, dec));

// Now you can do whatever you want with these columns
m += 1+z; // some silly stuff

// Writing is as simple
fits::write_table("new_file.fits", ftable(m, z, ra, dec));

Only the columns you need are actually read from the file, and the type of the variables you declare
in C++ has to match the type of the columns that are found inside the FITS table (conversions will be
performed automatically only if they imply no potential loss of data). Diagnostics will be given if this
is not the case. See the vif documentation for more detail.

In IDL. Column-oriented FITS tables can be read using mrdfits, and written using mwrfits:

8

; Read the whole table
tbl = mrdfits('the_file.fits', 1, /silent)

; Now you can do whatever you want with these columns
tbl.m += 1+tbl.z ; some silly stuff

; Writing is as simple
mwrfits, tbl, 'new_file.fits', /create

Be careful not to forget the /create keyword, else if the file already exists the function will add a new
extension to the table to write the data, and this is not what you want.

In Python. Column-oriented FITS tables are not well supported by the standard FITS I/O module
from astropy (you can use astropy.io.fits, but it will be a bit cumbersome). To cope with this
situation, I have written a small module that implements this in a user-friendly way; you can download
it [here]. Usage is as simple as above:

import pycolfits

Read the whole table
tbl = pycolfits.readfrom('the_file.fits')

Now you can do whatever you want with these columns
tbl['m'] += 1+tbl['z'] # some silly stuff

Writing is as simple
pycolfits.writeto('new_file.fits', tbl, clobber=True)

As for the IDL version, do not forget the clobber=True argument, else the function will throw an
exception if the file already exists (I don’t like this, but this seems to be the expected behavior in
Python).

In Topcat. If you use a language that does not support column-oriented tables, you can always try
to use Topcat to open these tables and convert them into a format of your choosing (would it be ASCII
or some other FITS format). Be sure to load the FITS table as “colfit-basic”. Unfortunately it does not
support all the features of column-oriented tables, so all but the simplest files will be rejected. Consider
instead investing time learning one of the above languages (and maybe not IDL).

2.2 egg-gencat

In this section, I first describe the most basic options and parameters of the tool. Then, I give you some
clues on how to read and use the generated catalog. All the other sub sections are here to describe more
advanced features, or smaller details that you do not need to worry about for your first contact with the
tool.

2.2.1 Basic usage

This is the main program of the EGG suite. It will create a new mock catalog from scratch. You simply
have to describe the parameters of the survey you want to simulate, i.e., the area of the sky that is covered
(in square degrees), the depth (in AB magnitude) and the selection band. This is the standard way of
using the software:

egg-gencat area=0.08 maglim=28 selection_band=hst-f160w

This will create a new catalog in a FITS table called egg-[yyyymmdd].fits, where [yyyymmdd] is the
current date. The name of this file can also be chosen using the command line parameter out:

9

https://github.com/cschreib/vif/blob/master/python/pycolfits.py

egg-gencat area=0.08 maglim=28 selection_band=hst-f160w out=some_folder/mycatalog.fits

The program generates the fluxes of each galaxies in an arbitrary number of bands simultaneously.
By default, a standard set of broad bands (mostly from the Hubble, Spitzer and Herschel telescopes) is
chosen, but most likely you will want to change that. The list of photometric bands must be given as an
array of band names through the bands command line argument:

egg-gencat area=0.08 maglim=28 selection_band=hst-f160w \
bands=[vimos-u,hst-f160w,spitzer-irac1,herschel-pacs160]

Here we ask for 4 bands: vimos-u, hst-f160w, spitzer-irac1 and herschel-pacs160, but you can
have as many as you want. Note that the selection band does not need to be part of this list.

The names of the bands is usually of the form [instrument]-[band]. They are case-sensitive, so
vimos-u is good, but vimos-U is not. Because these names are somewhat arbitrary, you can see the list
of all available bands by calling:

egg-gencat list_bands

This will print an alphabetically sorted list of bands, giving you the name, the reference wavelength and
the width of all the filters. You can also filter this list by providing a value to list_bands:

print all the JWST bands
egg-gencat list_bands="jwst-"

Result:
List of available bands (filter: 'jwst-'):
- jwst-f070w ref-lam = 0.695353 um, FWHM = 0.168 um
- jwst-f090w ref-lam = 0.902688 um, FWHM = 0.208 um
- jwst-f115w ref-lam = 1.15124 um, FWHM = 0.271 um
- jwst-f150w ref-lam = 1.50168 um, FWHM = 0.337 um
- jwst-f200w ref-lam = 1.99057 um, FWHM = 0.471 um
- jwst-f277w ref-lam = 2.78408 um, FWHM = 0.729 um
- jwst-f356w ref-lam = 3.55939 um, FWHM = 0.831 um
- jwst-f444w ref-lam = 4.44572 um, FWHM = 1.1526 um

print all the Ks bands
egg-gencat list_band="-Ks"

Result:
List of available bands (filter: '-Ks'):
- 2mass-Ks ref-lam = 2.16848 um, FWHM = 0.271 um
- flamingos-Ks ref-lam = 2.15594 um, FWHM = 0.308 um
- fourstar-Ks ref-lam = 2.15584 um, FWHM = 0.322 um
- hawki-Ks ref-lam = 2.14845 um, FWHM = 0.3241 um
- isaac-Ks ref-lam = 2.16813 um, FWHM = 0.266 um
- moircs-Ks ref-lam = 2.15952 um, FWHM = 0.273 um
- sofi-Ks ref-lam = 2.16798 um, FWHM = 0.259 um
- vista-Ks ref-lam = 2.15276 um, FWHM = 0.301 um
- wircam-Ks ref-lam = 2.15923 um, FWHM = 0.322 um

The value of 'list_band' is a POSIX regular expression.
So you can do some smart filtering, like showing all
the J, H and K (Ks) bands:
egg-gencat list_bands="-(J|H|K)"

10

2.2.2 Reading and using the generated catalog

The main objective of this tool is to produce fluxes. These fluxes are stored in the output catalog in
FITS format as two-dimensional columns. The order of the dimensions depends on the language you
use to browse the FITS table (see below), but one dimension corresponds to each galaxy, while the other
corresponds to each simulated band. In the examples below, I assume that you want to read the fluxes
in the Hubble F160W broad band (name: "hst-f160w").

In C++.

// Declare the arrays that we need
vec2f flux;
vec1s bands;
// Read the data
fits::read_table("egg-20151201.fits", ftable(flux, bands));

// Find the band ID in this catalog
uint_t bid = where(bands == "hst-f160w")[0];

// Here is the flux
// Note: dimensions of "flux" is [galaxy]x[band]
vec1f f160w = flux(_,bid);

// Print the flux of galaxy 54312
print(f160w[54312]);

In IDL.

; Read the catalog in memory
cat = mrdfits('egg-20151201.fits', 1, /silent)

; Find the band ID in this catalog
bid = (where(strpos(cat.bands, 'hst-f160w') eq 0))[0]

; Here is the flux
; Note: dimensions of "cat.flux" is [band]x[galaxy]
f160w = cat.flux[bid,*]

; Print the flux of galaxy 54312
print, f160w[54312]

In Python.

import pycolfits

Read the catalog in memory
cat = pycolfits.readfrom('egg-20151201.fits', lower_case=True)

Find the band ID in this catalog
bid = np.where(cat['bands'] == 'hst-f160w')[0][0]

Here is the flux
Note: dimensions of "cat['flux']" is [galaxy]x[band]
f160w = cat['flux'][:,bid]

Print the flux of galaxy 54312
print f160w[54312]

11

The simulated catalog contains many other columns to describe the physical properties of each
galaxy. These include the sky position, the stellar mass, the redshift, the dust temperature, and so on.
You may find some use in these parameters, for example if you want to see the redshift distribution that
is predicted by the simulation for your next generation survey. Below is the list of such parameters and
their definition.

• id: Unique identifier of this galaxy.

• ra, dec: The position of the galaxy on the sky, given in degrees.

• z, d: The redshift and luminosity distance of the galaxy. The distance is computed assuming a
cosmology where H0 = 70, ωL = 0.7, ωm = 0.3 and k = 0. It is given in Mpc.

• m, m_bulge, m_disk: The stellar mass of the galaxy, either the sum of all components, or the stellar
mass of each individual component. It is given in base-10 logarithm and in units of M�, Salpeter
IMF.

• passive: The quiescent flag: 1 (or true) for quiescent galaxies, 0 (or false) for star-forming
galaxies.

• sfr, rsb: Star formation rate (SFR) and “starburstiness” of the galaxy. The SFR is given in units
of M�/yr and in base-10 logarithmic scale, Salpeter IMF. The starburstiness is the ratio between
the SFR of the galaxy and the SFR of the Main Sequence at the redshift and the stellar mass of
this galaxy, and is given here also in logarithmic scale. Values of rsb above 0 indicate galaxies
with excess SFR compared to the average.

• bulge_angle, disk_angle: Position angle of each stellar component on the sky, in degrees.

• bulge_radius, disk_radius: The angular size of each stellar component, in arcseconds. This is
the half-light radius for both.

• bulge_ratio, disk_ratio: The axis ratio of each stellar component: 1 is perfectly round, 0
(which never happens) is perfectly linear.

• bt: The bulge-to-total stellar mass ratio, i.e., Mbulge/M∗.

• rfuv_bulge, rfvj_bulge, rfuv_disk, rfvj_disk: The U − V and V − J rest-frame colors of the
bulge and disk components. Given in differences of AB magnitudes.

• opt_sed_bulge, opt_sed_disk: Index of the SED in the stellar template library that was chosen
for each component. This is a flattened index, since the stellar library is provided on the two-
dimensional grid of colors. To get the actual 2D index, just take the modulo and integer division.
In C++, you would have iuv = opt_sed/30 and ivj = opt_sed%30.

• irx, sfrir, sfruv: Contribution of the IR and UV light to the total SFR of the galaxy. The IRX
is simply the ratio of the two.

• lir: Infrared luminosity from 8 to 1000 µm, in units of L�.

• tdust: The average dust temperature, in Kelvins.

• mdust: The total dust mass, in M� (note: not in logarithm...).

• ir8: The ratio of IR to 8 µm luminosity (Elbaz et al. 2011).

• fpah: The fraction of the dust mass that is contributed by PAH molecules (0: no PAH, 1: only
PAH).

12

• ir_sed: Index of the SED in the dust template library that was chosen for this galaxy. Corresponds
to a given value of Tdust.

• bands, lambda: Arrays containing the names and reference wavelengths of each photometric band
used to produce the observed fluxes. Wavelength is in µm.

• flux, flux_bulge, flux_disk: Two dimensional columns containing the total observed flux of
each galaxy in each band, or the flux in each component. See above. Given in µJy.

• rfbands, rflambda: Arrays containing the names and reference wavelengths of each photometric
band used to produce the absolute magnitudes. Wavelength is in µm.

• rfmag, rfmag_bulge, rfmag_disk: Two dimensional columns containing the total absolute mag-
nitude of each galaxy in each band (given in rfbands), or the magnitude in each component. See
below for more detail about absolute magnitudes. Given in AB magnitudes at 10 pc.

• zb: Redshift slices used by the program (two dimensions: one is for each slice, the second contains
two elements: the lower and upper bounds of the slice).

• cmd: Single string containing the command line arguments that were used to create this catalog.

2.2.3 Choosing a seed

The catalog is created using a random number generator and a set of recipes. However, even with the
random number generator, running the above commands will always produce the same catalog. This
is because the same random seed is used every time. The seed basically sets the starting point of the
random number generator: choosing a slightly different seed will result in a completely different catalog.
By default, this seed is chosen to be equal to the arbitrary value of 42. You can change this value using
the command line argument seed:

egg-gencat area=0.08 maglim=28 selection_band=hst-f160w seed=1456518

The value of the seed can be any positive integer number (including 0) that your computer can handle
(that is, a 32bit or 64bit integer depending on the architecture of your CPU). Nobody knows what is the
seed of our own Universe, so feel free to use whatever value you like.

2.2.4 Starting from your own galaxies

The first step of the program is to generate the galaxies, with their position on the sky, their redshift,
their stellar mass, and their star-forming classification (i.e., each galaxy is either star-forming or quies-
cent according to the UV J diagram). This is done using the stellar-mass functions that I observed in
the GOODS–South field combined with observations in the Local Universe, and this should be fairly
realistic between z = 0 to z = 3. However, the program also gives you the opportunity to provide these
parameters yourself. You could, for example, provide a true (observed) catalog of galaxies, and let the
program run its recipes to predict the fluxes of each object.

To do so, you must first create an input catalog suitable for ingestion by egg-gencat. The program
accepts two file formats: either a column-oriented FITS table or a plain ASCII table. The ASCII file
must contain 6 columns in the following order: the ID of the galaxy, the RA and Dec position in degrees
(double precision is advisable), the redshift, the base-10 logarithm of the stellar mass, and the quiescent
flag (1: quiescent, 0: star-forming). The FITS file must contain at least the columns "ra", "dec", "z",
"m", and "passive" with the same content as for the ASCII table, and the column "id" is optional (if
you don’t provide it, egg-gencat will create an ID for you, starting from zero and increasing by one for
each galaxy). Your input redshifts must be positive, and the stellar masses must be larger than 4 and
lower than 13.

13

I assume you know how to handle ASCII tables yourself. For tables in the FITS format, since
column-oriented tables are not very well known, I give below a small example in three common lan-
guages.

In C++.

// Create a small catalog with two galaxies!
vec1u id = {1, 2};
vec1d ra = {53.006, 53.008};
vec1d dec = {124.0507, 124.051};
vec1f z = {1.05, 2.6};
vec1f m = {11.2, 10.5};
vec1b passive = {true, false};

// Write the file
fits::write_table("input_cat.fits", ftable(id, ra, dec, z, m, passive));

In IDL.

; Create a small catalog with two galaxies!
cat = { $

id : [1, 2], $
ra : [53.006d, 53.008d], $
dec : [124.0507d, 124.051d], $
z : [1.05, 2.6], $
m : [11.2, 10.5], $
passive : [1, 0] $

}

; Write the file
mwrfits(cat, 'input_cat.fits', /create)

In Python.

Create a small catalog with two galaxies!
cat = {

'id' : np.array([1, 2]),
'ra' : np.array([53.006, 53.008]),
'dec' : np.array([124.0507, 124.051]),
'z' : np.array([1.05, 2.6]),
'm' : np.array([11.2, 10.5]),
'passive' : np.array([True, False])

}

Write the file
pycolfits.writeto('input_cat.fits', cat, clobber=True)

Optionally, you can also provide your own values for the infrared luminosity (LIR, in solar luminosity
L�), the IR8 and Tdust (in Kelvins) in the lir, ir8 and tdust columns, respectively. Each of them can
be provided independently, depending on which data you have at hands. To let the program randomly
generate one of these quantities for a particular galaxy, set the value to NaN.

If there are galaxies for which you provide the LIR, the program will adapt its recipes to match
what is expected for galaxies of the chosen luminosity. For example, if you give a source a huge IR
luminosity, it will be considered as a “starburst” and be given a higher dust temperature, among other
things). Obviously, if you also provide the Tdust and/or IR8 for these galaxies, these values will be used
instead.

14

In addition, and in order to preserve the statistical quality of the simulated catalog, the program will
automatically balance the LIR of the other galaxies for which you did not provide a LIR. More precisely,
for each galaxy with a provided LIR, the program will search in the simulated catalog for an existing
galaxy with similar properties (stellar mass, redshift and quiescent flag) and the closest LIR, and assign
it the properties that would have been given to your galaxy if you had not given it your own LIR value.

2.2.5 Choosing the survey position

By default, the program creates a survey centered at the position RA=53.558750 and Dec=−27.176001,
which is approximately the center of the GOODS–South field. You can specify another position if you
wish, although for now this choice has no consequence on the simulated catalog itself. However, when
stars are included in a future release of the program, the number density of foreground stars will likely
depend on the survey position. On top of this, you may wish to perform some post-processing on the
catalog to include additional components (cirrus emission, or whatever) that depend on the absolute sky
position.

The center of the field can be specified using the ra0 and dec0 command line arguments:

egg-gencat area=0.08 maglim=28 selection_band=hst-f160w ra0=2.45621 dec0=33.065632

The current definition of the survey area is a bit naive, and may yield weird results for surveys very close
to (or including) the poles. Try to avoid this. If you have to, at least double check that the results make
sense.

2.2.6 Choosing the stellar mass range

The standard behavior of the program is to generate galaxies in redshift slices, going down in stellar mass
until more than 90% of the galaxies become fainter than the limiting magnitude specified in maglim. An
alternative is to use a fixed stellar mass range at all redshifts. To simulate flux-limited surveys, this
is obviously less efficient, since you may miss visible galaxies at low redshifts, and/or include many
unobservable galaxies at high redshifts.

Still, in case you need this feature, you can specify the stellar mass interval using the mmin and
mmax arguments (note: as always, the stellar mass must be specified in base-10 logarithm). By default,
mmax=12, and mmin has no value. Providing a value for mmin disables the limiting magnitude.

egg-gencat area=0.08 maglim=28 selection_band=hst-f160w mmin=8.5 mmax=11.5

2.2.7 Choosing the redshift range

A realistic simulation should include galaxies from all redshifts. However, for practical implementation
reasons, this program can only handle a finite range, excluding z = 0 (the Milky Way, as far as I known)
and z = ∞ (the Big Bang, or whatever). By default, the program generates galaxies starting from
z = 10.5 up to z = 0.05. These boundaries are well suited for deep cosmological surveys like GOODS,
but may be inadequate for shallower surveys covering wider areas. Changing the highest simulated
redshift will have a negligible impact on performances, so I would advise leaving it as it is. On the other
hand, if you simulate areas larger than 1 deg2, a minimum redshift of 0.05 may be too high. Conversely,
if you are interested in pencil-beam surveys like the HUDF, you may want to increase the minimum
redshift to avoid bright foreground galaxies.

This can be achieved by modifying the zmin and zmax arguments:

egg-gencat area=0.08 maglim=28 selection_band=hst-f160w zmin=0.01 zmax=5.0

There is no implicit restriction regarding the minimum redshift, except that it must be different from
zero. Note that, since the redshift bins are defined so that zi+1 = zi (1 + zmin), the smaller the minimum
redshift, the more redshift bins will be simulated. So you may start to degrade the performances if you
go too low.

15

2.2.8 Adding new photometric bands

Most of the commonly used filters are in this data base. But the list is not complete. You may want to
use a filter that is not provided there, or even create your own imaginary filter to test some hypothesis,
or predict what a future instrument will see. There are several ways to do this.

The easiest way is to define the filter in place, in the band list. For each filter in the bands list, you
can use an extended syntax: [band-name]:range:[lmin]:[lmax], where [band-name] is the name that
you chose for your new filter (avoid spaces), and [lmin] and [lmax] define the minimum an maximum
wavelength of the filter. The filter is then constructed on the fly, using a simple top-hat function between
the specified boundaries. For example, lets improve the previous band list by adding a new hypothetical
filter "herschel-pacs40" that spans λ = 32 to 51 µm:

egg-gencat area=0.08 maglim=28 selection_band=hst-f160w \
bands=[vimos-u,hst-f160w,spitzer-irac1,herschel-pacs40:range:32:51]

This is rather crude though, and you may prefer to provide a more detailed filter response curve. To
do so, use the syntax [band-name]:file:[path], where this time [path] is the path to a file containing
the filter response curve. This file can be either a column-oriented FITS table or an ASCII table. If it
is an ASCII table, it must contain two columns: the wavelength (in µm), and the filter response curve,
normalized to unit integral. If it is a FITS table, it must contain the columns "lam", the wavelength, and
"res", the response curve. Note that, to be accurate, the filter must be defined so that the flux in the
corresponding band is obtained by integrating as a function of wavelength the product of the filter f and
the spectrum of the galaxy sν in flux per unit frequency. In other words:

S ν =

∫ ∞

0
dλ

[
f (λ) sν(λ)

]
.

If you see yourself using the same filter over and over again, and you are tired of re-defining it in the
command line arguments, you may add this filter to your local EGG data base. This data base is located
in the $INSTALL_ROOT_DIR/share/egg/filter-db folder (see the installation instructions if you don’t
know what $INSTALL_ROOT_DIR is). The first step is to copy your filter response curve into this directory
(you can use sub-directories if you wish). Either FITS or ASCII format will do. Then, open the db.dat
file with your text editor, and add a new line somewhere in the file (the order of the lines is irrelevant):

[band-name]=[path]

The [band-name] is defined as above, and may not contain spaces. The [path] must be relative to the
location of the db.dat file. Once this is done, you can use your filter like any other, by just specifying
its name in the bands list.

2.2.9 Computing absolute magnitudes

In addition to observed fluxes, the program can also compute for you the absolute magnitude of each
galaxy in a set of bands. This works exactly as for observed fluxes, except that you must specify the
bands in the rfbands command line argument instead.

2.2.10 Disabling simulation steps

Sometimes you only care about one particular aspect of the simulation. To save time, you can disable
the steps you do not need. In particular:

• no_pos: do not generate sky positions

• no_clust: do not put clustering in sky positions

16

• no_flux: do not generate any flux, just galaxy parameters

• no_dust: do not include dust emission in the fluxes

• no_stellar: do not include stellar emission in the fluxes

2.2.11 Saving the full spectrum of each galaxy

The output catalog produced by egg-gencat can only contain broad-band fluxes, not spectra. Indeed,
saving all the spectra occupies a lot of disk space, and it is usually not necessary. However, this can be
a useful piece of information for some specific applications, therefore this program gives you a way to
obtain it.

To do so, just set the save_sed command line flag. This will save the bulge and disk spectra sepa-
rately. Because this can generate huge volumes of data, the spectra are not saved inside the generated
catalog, but in another file. By default, the name of this file is the same as that of the generated catalog,
but ending with "-seds.dat". You can change that using the seds_file command line argument.

egg-gencat area=0.08 maglim=28 selection_band=hst-f160w save_sed

The size of the file is typically about 40 KB per galaxy. So the command above, which generates some
100 000 galaxies, will generate about 4 GB of spectra. You have been warned.

The spectra in this file are stored in a custom binary format, since neither standard FITS nor ASCII
tables provide an efficient way to handle this. If you do not want to bother figuring out how to read this
file, please use the egg-getsed program like so:

get the spectrum of the bulge of galaxy 54231
egg-getsed seds=catalog-seds.dat id=54213 component=bulge
create the FITS file catalogs-seds-54213-bulge.fits
wavelength is column 'lambda', spectrum is in 'flux'

if you don't like FITS tables, you can also ask for ASCII
egg-getsed seds=catalog-seds.dat id=54213 component=bulge ascii
create the ASCII table catalogs-seds-54213-bulge.cat
two columns: wavelength and flux

Wavelength is given in µm, while the unit of the spectrum is a flux in µJy.
If you need more performance and/or do not want to create a spectrum file for each galaxy with the

above command, you will need to read directly from the binary file. Each spectrum is stored contigu-
ously, first the wavelengths (in µm), then the flux (in µJy). Both are saved in single precision floating
point numbers. To figure out the position of the spectrum of a given galaxy, a “lookup” file is created.
Its name is the same as that of the spectrum file, except that it ends with "-seds-lookup.fits". This is
a column-oriented FITS table. It contains five columns: "id" is the ID of each galaxy, "bulge_start"
gives the position of the first element of the bulge spectrum of this galaxy in the file (in bytes, starting
from the beginning of the file), "bulge_nbyte" gives the total number of bytes occupied by this spec-
trum (including the wavelengths and the spectrum values), and finally "disk_start" and "disk_nbyte"
provide the same informations for the disk component.

So, to read the bulge spectrum of galaxy 54312:

• Open the spectrum file in binary mode.

• Go to the position bulge_start[54312].

• Read bulge_nbyte[54321]/sizeof(float)/2 floating point numbers into the wavelength array.

• Read another bulge_nbyte[54321]/sizeof(float)/2 floating point numbers into the spectrum
array.

17

• Close the file.

This is exactly what is done by egg-getsed. Look at the source code of this tool if you are unsure of
how to implement it yourself.

2.3 egg-2skymaker

2.3.1 Basic usage

This tool is used to convert a mock catalog created by egg-gencat into input catalogs and configuration
files for SkyMaker. Each call to the tool creates one SkyMaker setup for one band, and uses a “template”
SkyMaker configuration file to define the PSF and the noise properties of the image:

assume we want to create an image of the Hubble F160W band
egg-2skymaker cat=egg-20151201.fits band=hst-f160w \

template=goodss-hst-f160w.conf out=egg-f160w.cat verbose

The cat parameter holds the path to the mock catalog, band is the name of the photometric band for
which to generate a SkyMaker setup, and template gives the name of the SkyMaker configuration tem-
plate. The resulting SkyMaker input catalog will be saved in out. The SkyMaker configuration file
and FITS header will be written in [out]-sky.conf and [out]-hdr.txt (with the extension of out
removed). This parameter also defines the name of the image file that SkyMaker will create (see below).

The template file must be a valid SkyMaker configuration file. You should provide there all the
necessary parameters to simulate an image of this type (i.e., the right PSF, the right noise level, etc.). In
particular, take special care with the following parameters:

• PIXEL_SIZE: This parameter is needed by egg-2skymaker to compute the size of the FITS image
that SkyMaker will generate. Must be in arcseconds/pixel.

• PSF_xxx: If you want to use a PSF file, make sure that the path is either a) an abso-
lute path, or b) relative to the location of the template configuration file. In the latter
case, egg-2skymaker will take care of converting this path to an absolute path. For ex-
ample, if the template is located in "/home/cschreib/test/goods-hst-f160w.conf" and the
value of PSF_NAME is "../psfs/hst-f160w.fits", then it will be automatically converted to
"/home/cschreib/psfs/hst-f160w.conf". This is to ensure that SkyMaker is able to find the
PSF file wherever the template configuration file is located.

You do not have to provide the following parameters, since they will be replaced automatically by
egg-2skymaker:

• IMAGE_TYPE: Set to SKY (only filled if missing).

• LISTCOORD_TYPE: Set to PIXELS.

• IMAGE_NAME: Set to [img_dir]/[out]-sci.fits. The value of img_dir is read from the
command line arguments, and defaults to the current directory. In this context, only
the base name of out is used, i.e., the extension (".cat") and the directories are re-
moved. For example, if out="catalogs/egg-f160w.cat", then the image name will be
"[img_dir]/egg-f160w-sci.fits".

• IMAGE_SIZE: Computed automatically from PIXEL_SIZE and the area covered by the mock catalog
(see below).

• IMAGE_HEADER: Set to [out]-hdr.txt.

18

Out of the box, EGG provides you with a set of pre-defined template files. These serve
two purposes: provide realistic templates for the most common cases, and provide examples that
you can build upon to create your own templates. These pre-defined templates are stored in the
$INSTALL_ROOT_DIR/share/egg/skymaker-templates folder (see the installation instructions if you
don’t know what $INSTALL_ROOT_DIR is). The program will automatically look inside this directory
if the template file name that you provided in the template argument cannot be found in the current
directory. Use the list_templates command to display the list of available pre-defined templates.

2.3.2 Defining the image dimensions

By default the program will try to build one single image out of the provided mock catalog. Knowing
the requested pixel size and the coordinates of each galaxy, it draws a rectangle bounding box around
the projected x and y coordinates of the galaxies, taking into account their respective size so that no
galaxy ends up being truncated at the border of the image. If this is not what you want, there are several
ways to adjust this behavior.

First, you can add a fixed extra amount of empty space at the border of the image using the inset
keyword (in arcseconds). This adds up with the padding computed from the sizes of the galaxies. If
you want to disable the size-dependent padding, set the strict_clip keyword (this will not disable the
effect of inset if both arguments are used at the same time).

Second, creating a single image for the whole field might prove to be impractical if the pixel size
is small and the area is large. The resulting image may be too big to handle conveniently with other
programs such as DS9. In addition, SkyMaker can only create images with total size smaller than the
amount of available RAM memory on your computer. If you encounter either of these limitations, you
can ask egg-2skymaker to split the image into multiple tiles that SkyMaker will create one by one. To
do so, use the size_cap keyword. The value must be the maximum allowed size of the image (or of a
single tile) in GigaBytes. For example, if you set this value to 1 GB and if egg-2skymaker realizes that
the resulting image would be larger than this, it will create a number of tiles, each with a size less than
1 GB and covering a different region of the field.

If multiple tiles are created, they are named according to their position. For example, if IMAGE_NAME
was chosen to "egg-f160w-sci.fits", then the tiles will be named "egg-f160w-sci-x-y.fits" where
"x" and "y" are the indices of the tile (starting from 1) corresponding to increasing right-ascension and
decreasing declination, respectively. One SkyMaker configuration file and FITS header will be created
for each tile according to the same naming scheme.

In this situation, if one wants to know in which tile lies a particular galaxy, one should set the
save_pixpos keyword. This will create an additional column-oriented FITS table whose name is given
by save_pixpos. This table will contain the x and y position of each galaxy on their respective tile
(given in pixel units, the first pixel of the map being {1,1}), and the columns tilex and tiley provide
the indices of the tile.

2.3.3 Other features

By default the tool will create a SkyMaker catalog including all the galaxies from the mock catalog.
If you wish, you can ask it to only output the galaxies brighter than a given magnitude in this band.
This can be done with the maglim keyword, which must be set to the requested limiting magnitude in
the AB system. This may improve the performances, at the expense of correctness. However, note that
SkyMaker takes into account the “observability” of a galaxy when it paints it on the image: if the galaxy
is substantially fainter than the noise level, SkyMaker will not draw it at all. So the performance gain of
having fewer galaxies in the input list may not be noticeable.

19

2.3.4 Advices and hints to prepare SkyMaker templates

Once the pixel scale and the PSF are defined in the SkyMaker configuration file, the most important
parameters are:

• MAG_ZEROPOINT: sets the conversion factor between fluxes in µJy and map units (in [...]/seconds);
this value is usually given in catalog/survey papers. It is such that:

(S ν[µJy]) = (S ν[map]) × 100.4 (23.9−MAG_ZEROPOINT) .

• EXPOSURE_TIME: as the name suggests, this is the exposure time (in seconds) of the image, often
given in the survey papers.

• GAIN: sets the conversion factor from map units to electrons/seconds. If you cannot figure out
this value, set it to one. As long as you use the same value to estimate the background surface
brightness (see below), the actual value does not matter.

• BACK_MAG: this is the background surface brightness, which must be given in AB magnitude within
one arcsec2. Together with the exposure time, this value defines the amplitude of the background
Poissonian noise.

• READOUT_NOISE: the amplitude of the Gaussian noise created by the read-out of the detector, given
in electrons. For deep background-dominated images, this can be neglected and set to zero.

The trick is that BACK_MAG is unknown and must be estimated indirectly. I give below a method that
can be used to do so.

• Find a real image from which you will copy the noise level.

• Open the image in DS9.

• Create a circle region in some empty space devoid of galaxies.

• Use the analysis tools to measure the standard deviation of the pixel values within this circle. I
will call this value RMS.

• Assuming that all the noise in the image is Poissonian, the background surface brightness is given
by:

BACK_MAG = −2.5 × log10(EXPOSURE_TIME × GAIN × RMS2/PIXEL_SIZE2) + MAG_ZEROPOINT

2.3.5 Unit of the SkyMaker images

SkyMaker produces the images with pixel values in ADU, i.e., number of electrons divided by the gain.
The image also includes the absolute background level from the sky. This is uncommon: most often,
images are provided in ADU/seconds and with the sky subtracted by construction. You can correct for
that yourself as a post-processing step, since you know the sky surface brightness (see previous section)
and the exposure time.

To make it more convenient, EGG provides a simple tool to do just that: egg-postskymaker. It reads
all the necessary information from the SkyMaker configuration file and performs the steps described
above (conversion from ADU to ADU/seconds and background subtraction). The usage is very simple:

egg-postskymaker conf=egg-f160w-sky.conf

And that’s it. It reads the image filename directly from the configuration file, and overwrites the original
image.

In addition, this tool also takes care of setting the FITS keywords BUNIT, MAGZERO, FLUXCONV, GAIN
and EXPTIME (set to 1 since the image is the number of ADU in one second).

20

2.4 egg-gennoise and egg-genmap
2.4.1 Basic usage

These two tools can be used to create the images corresponding to a given mock catalog created by
egg-gencat (custom catalogs are also supported, see below). They provide a simple alternative to
SkyMaker, with the added limitation that galaxies are all considered as point sources. This is usually
fine for long wavelength images (Spitzer MIPS and Herschel, typically) in cosmological deep fields. In
addition, more control is given relative to the noise properties.

The typical call sequence consists of two steps: creating the noise map with egg-gennoise, then
painting the galaxies on top of it with egg-genmap. The standard way to use egg-gennoise is the
following:

assume we want to create an image of the Herschel PACS 160um band
egg-gennoise cat=egg-20151201.fits out=pacs160-noise.fits \

psf=herschel-pacs160.fits aspix=2.4 rms=1.68e-5 verbose

The argument cat gives the path to the mock catalog, while out gives the name of the file into which
the noise map will be saved. Then, psf provides the FITS image of the point spread function of this
instrument, aspix is the pixel size (in arcseconds/pixel) and rms is the desired noise level of the map (in
map units, whatever they are). This latter value would be the standard deviation of the map pixel values
without any galaxy painted on it. If you want to mimic the noise level of an existing image, simply
measure the standard deviation of the pixels in an empty region and use this value for the rms keyword.
The noise is assumed to be Gaussian with zero average.

Some common PSFs are provided with EGG. They are stored in the
$INSTALL_ROOT_DIR/share/egg/psfs folder (see the installation instructions if you don’t know
what $INSTALL_ROOT_DIR is). If the program cannot find the PSF you provided in the current directory,
it will each among these PSFs for a matching name. Use the list_psfs argument to display a list of all
the available PSFs.

Once the process is complete, this will create a new image containing just noise. The dimensions of
the image are computed automatically from the provided pixel size and the area covered by the mock
catalog, so that no galaxy is truncated close to the border of the image. A padding of 5 times the
full-width at half-maximum of the PSF is included to ensure that this is true. The resulting noise map
contains the necessary WCS astrometry.

Once this noise map is created, we can use egg-genmap to add the galaxies:

egg-genmap cat=egg-20151201.fits out=pacs160-sci.fits \
noise_map=pacs160-noise.fits band=herschel-pacs160 \
psf=herschel-pacs160.fits flux_factor=1.613e6 verbose

The values of cat and psfmust be the same as in the previous step. This time, out gives the name of the
file into which the final image will be saved, while noise_map must be set to the name of the noise map
created by egg-gennoise. Finally, band sets the photometric band from which the flux of each galaxy
will be drawn, and flux_factor is the conversion factor from fluxes to map units.

The flux conversion factor is strongly tied to the properties of the PSF file. If the PSF is normalized
to unit peak flux, then it is the conversion between µJy/beam to map units. Else, if the PSF is normalized
to unit total flux (the sum of all pixels is equal to one), then it is the conversion between µJy/pixel and
map units. Be careful that, in this latter case, the aperture correction resulting from a truncated PSF need
to be included, either in the flux conversion factor or in the normalization of the PSF itself (the program
will not renormalize it internally). In all cases, a galaxy is placed on the map following:

map[i,j] += flux_factor × psf[i,j] × (S ν/µJy)

where psf[i,j] is the pixel value of the PSF translated to the position of the galaxy and S ν is the flux
of this galaxy.

21

2.4.2 Using a custom astrometry and image dimensions

The tool egg-gennoise can compute automatically a suitable astrometry and image dimensions accord-
ing to the input catalog. However, you also have the possibility to copy the astrometry and image
dimensions of an existing file. To do so, just use the astro command line argument and make it point
to the FITS image you want to copy the data from:

egg-gennoise cat=egg-20151201.fits out=pacs160-noise.fits \
psf=herschel-pacs160.fits rms=1.68e-5 verbose \
astro=this_image_I_like_a_lot.fits

In this case, the value of aspix is not used and it can be omitted from the argument list.

2.4.3 Flag regions of the map with poor catalog coverage

By default the tools create a large map that encompasses the whole input catalog, with some margin.
This means that, close to the borders of the image, the source density is very low and the image statistics
are not realistic. This can be an issue for some applications. To cope for this, the egg-gennoise option
clip_borders will identify the regions of the map with low source density, and flag them with “not-a-
number” pixels so that no value can be read from there. This assumes that the input catalog does not
contain holes, and will only affect the borders of the image.

2.4.4 Generate beam-smoothed images (sub-millimeter)

It is common practice in sub-millimeter astronomy to filter the observed maps with the PSF (or beam)
of the instrument. Because these images usually have low signal-to-noise ratios, this allows easier
identification of detections by eye or with blind source extraction tools. Note however that this is sub-
optimal for prior-based source extraction or stacking because the size of the effective PSF is multiplied
by
√

2, which increases the confusion. In addition, the gain is signal-to-noise is null since these methods
already apply a sort of beam-smearing internally.

Nevertheless, in order to be able to reproduce such kind of images, both egg-gennoise and
egg-genmap provide a set of command line arguments. In all cases, beam_smoothed must be set for
both programs to notify them of your intention. By default, the map will be smoothed using the PSF
as kernel. If you prefer to use a custom kernel, use the smooth_fwhm to specify the full-width at half-
maximum of the kernel (in pixels).

If this option is used, the behavior of the programs is the following:

• Create the noise map, unfiltered (without smoothing), and with the requested noise level.

• Copy this map and apply the beam smoothing. Measure the new noise standard deviation (it is
indeed modified by the smoothing process).

• Adjust the noise level of the unfiltered map so that the noise level in the previous step matches the
one requested by the user.

• Feed the unfiltered map to egg-genmap, add the galaxies.

• Finally perform the beam smoothing.

This means that the value of the rms argument must be set to the expected noise standard deviation of
the final, smoothed map.

22

2.4.5 Generate error and coverage maps

Without extra effort, the egg-gennoise program can generate for you the error and coverage map
corresponding to your noise map and input catalog. To do so, simply set the make_err and
make_cov arguments; this will generate the error map as "[out]-err.fits" and the coverage map as
"[out]-cov.fits" (1: covered, 0 or not-a-number: not covered).

These maps carry very little information since the noise generated by egg-gennoise is uniform and
covers the whole map by default. However, some external tools require the existence of either one or
both of these.

2.4.6 Using a custom noise map

The whole point of separating the map-making process into two steps is that one can be used without
the other. Indeed, egg-genmap can work with any noise map, provided that it contains valid WCS
astrometry. The tool can handle sources outside of the map, so it is fine if the provided noise map does
not overlap perfectly with the input catalog. Just make sure that the PSF you provide is tabulated on the
same pixel scale as your noise map. If you use the beam_smoothed option, note that the noise map must
be provided unfiltered (i.e., before beam convolution).

For example, realistic Herschel noise maps can be obtained by jackknifing the observed data, and
provide noise statistics (correlation, amplitude, etc.) that match very well the real images. Such kind of
map can be fed naturally to egg-genmap through the noise_map argument.

2.4.7 Using a custom flux catalog

Similarly, both tools can work with input catalogs that were not produced by egg-gencat. They only
need a limited set of columns: "ra" and "dec" to know the position of each galaxy on the sky, and
"flux" must contain the flux of each galaxy in µJy.

Catalogs produced by egg-gencat contain multiple fluxes per galaxy, so in this case you also need
the "bands" column and the band command line argument to identify the correct flux. Alternatively, the
program can also work with a "flux" column containing a single band (i.e., a 1D vector column), in
which case the "bands" column and the band command line argument can be omitted. If you prefer to
use ASCII format, the order of the columns must be "ra", "dec" and "flux" (1D only).

2.4.8 Adjusting accuracy and speed

By default both tools write FITS images on the disk with single precision floating point numbers. While
this is sufficient for most usages, you can change this behavior and use double precision instead. To
do so, just provide the double flag in the command line arguments of both egg-gennoise (if you use
it) and egg-genmap. Generated maps will occupy twice more disk space. Note that internally the maps
are manipulated with double precision format in any case, so the only improvement in precision that
is provided by this option is to avoid truncating significant digits at the very end of the map making
process when the file is written on the disk.

If instead you are interested in decreasing the accuracy of the simulation to save computation time,
you can ask to disable the sub-pixel interpolations of the PSF using the no_subpixel flag of egg-genmap.
With this option enabled, the program will consider that all the input sources have their center at integer
pixel coordinates. Else (the default), bilinear interpolation is performed to shift the provided PSF FITS
image for each source, which is more correct but slower.

23

	Installing EGG
	Forewords
	Install dependencies
	Install vif and EGG: the short way
	Install vif and EGG: the long way
	Making sure everything works

	Using EGG
	Generic information (applies to all programs)
	Command line arguments
	Control what is written to the standard output (terminal)
	Rules for ASCII table formatting
	Column-oriented FITS tables

	egg-gencat
	Basic usage
	Reading and using the generated catalog
	Choosing a seed
	Starting from your own galaxies
	Choosing the survey position
	Choosing the stellar mass range
	Choosing the redshift range
	Adding new photometric bands
	Computing absolute magnitudes
	Disabling simulation steps
	Saving the full spectrum of each galaxy

	egg-2skymaker
	Basic usage
	Defining the image dimensions
	Other features
	Advices and hints to prepare SkyMaker templates
	Unit of the SkyMaker images

	egg-gennoise and egg-genmap
	Basic usage
	Using a custom astrometry and image dimensions
	Flag regions of the map with poor catalog coverage
	Generate beam-smoothed images (sub-millimeter)
	Generate error and coverage maps
	Using a custom noise map
	Using a custom flux catalog
	Adjusting accuracy and speed

